FLOW OVER BLUNTED CONES AND SEGMENTAL BODIES

V. P. Karyagin, A. B, Loshakov, UDC 533.6.011.5 +532.582.3
and A. I. Shvets

An analysis of the aerodynamic characteristics of various modifications of blunted bodies of small length
was made on the basis of the results of experimental investigations, The experiments were performed on an
aerodynamic installation in the range of Mach numbers M =0.4-3 at Reynolds numbers Re =7 - 10°-3 - 10, cal-
culated from the midsection diameter of the models and the parameters of the oncoming stream. We tested
models of segmental bodies (Fig. 1a, relative radii R/D=1.46 and 1.18, where R is the radius of the sphere
and D is the diameter of the base cut; the central angles are 40 and 50°, respectively) and of blunted cones (Fig.
1b) with large aperture half-angles (6 =60 and 70°) and a degree of blunting d/D=0.25 (where d is the diameter
of the spherical blunting). The aerodynamic characteristics were obtained for different variants of blunted
cones: with beveled bases (Fig. 1b, 6 =60°, d/D=0.25, ¥ =5 and 10°; ¢ =70°, d/D=0.25, y =40, 1°, and 1°30');
with edges cut off parallel (Fig. 1c, 6 =60°,d/D=0, d'/D=0.96, 0.93, and 0.87; d' is the distance between the
edges); with cylindrical grooves on the conical part (Fig. 1d, the radius of agroove equals the radius of thebase
cut) which cut the rear part into 12 faces (6 =77°, d/D=0.25). ‘
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- The maximum diameter of the middle cross section of the model and the area of the middle cross section
were taken as the parameters in the calculation of the aerodynamic coefficients. The total rms error in the
measurements of the aerodynamic coefficients of the tangential force c;, the normal force cp, and the pitching
- moment m, did not exceed 6% for subsonic velocities and 3% for supersonic velocities.

With an increase in M the drag coefficient cx of blunted bodies of small length first increases at near-
-sonic velocity, decreases somewhat at a low supersonic velocity, and reaches a maximum value at M=2-3 (Fig.
1, 1.is a segmental body, R/D=1.5; 2 is a blunted cone, 6 =60° 3 is a blunted cone with cylindrical grooves, 8 =
77°; 4 (dashed line) is a segment, R/D =1 [1]; 5 (dashed line) is a cone, 6§ =60° [2]). A decrease in the relative
radius of the segmental body from R/D=1.46 to 1.18 leads to a 5-7% decrease in resistance in the entire range
of Mach numbers investigated. The influence of the bevel angle v of the base cut on the resistance of cones
depends on the velocity of the oncoming stream: an increase in ¥ at subsonic velocities alters cy slightly, in-
creases it at near-sonic velocities, and decreases it at supersonic velocities.

To allow for the base drag of the holder we measured the base pressure with two drain openings emerging
through the fairing of the strain-gauge—holder at a distance of 2 mm toward the base end of the models. The
base pressure behind a segment of 6 =50° is somewhat greater for subsonic flow and less for supersonic flow
than that behind a segment of 8 = 40° (Fig. 1, 6 is 8 =40° and 7 is 6 =50°). Since the ratio of the area of the
holder to the area of the model base is 11%, with allowance for the base drag of the holder the frontal drag co-
efficient of the models increases by 1.4-2% at M > 1 and by 3-6% at M =<1.

The coefficients of normal force for conical bodies and of lifting force for segmental and conical bodies
are linear functions within the limits of the angles of attack investigated, which was also noted in [1, 3].

On a segmental front surface in the presence of an angle of attack a normal force develops with the same
sign as the value of . Only for a model of a segmental body with R/D=1.5 at subsonic or near-sonic veloci-
ties of the oncoming stream and small angles of attack does the coefficient cy behave like that for segmental -
conical bodies in [4], i.e., have a negative value. But whereas this effect for segmental —conical bodies is con-
nected with the pressure dlStI‘lb\lthIl on the conical surface, for a segmental model it evidently is caused by the



anomalous movement of the leading critical point at subsonic velocities and by the asymmetrical formation of
local supersonic zones near the rims at near-sonic velocities,

In the subsonic and near-sonic velocity ranges an increase in the Mach number causes an increase in the
absolute value of c& for segments and cones, while for supersonic flow the value of c?,‘ varies slightly (Fig.

2a; the notation corresponds to Fig. 1; c‘y)f and m¢, 1/rad).

In order to compare the data on cones and segments we took as a parameter the angle 8, which in the
first case is the aperture half-angle of the cone while in the second case it is the angle between the tangent to
the contour of the model at the corner point and the axis of symmetry (see Fig. 1). A pointed cone changes
into a segment as the spherical blunting d/D of the cones varies from 0 to 1.

Some generalized functions cg and cg for test bodies, cones with large aperture half-angles [5, 6], and
segments [1) are presented in Fig. 3, where 1-6 are cg; 7-8 are cy'; 1 is a blunted cone, 6 =60°, and a cone
with grooves, @ =77° 2) are segments, R/D=1.18 and 1.46; 3 and 4 are experiment and calculation by Newton's
method (dashed line) for a segment with R/D=1 [1}; 5 and 6 are cones [5, 6]; 7 is blunted cones, 8§ =60 and 70°;
8 is cones [5]. For all the cones and segments, starting with 6 =60°, the frontal drag coefficient depends
weakly on the shape of the body, i.e., the angle 6 and the degree of blunting of the cone, with the experimental
values of cx for a segment with 6> 45° being less than the values calculated from Newton's theory [1]. Good
agreement between the calculated and experimental data is observed in the range of angles 6 =0-45°.

An increase in the relative radius R/D (or the angle ) of a segmental body and an increase in the half-
angle at the apex of a conical body are accompanied by an increase inthe absolute value of the lift coefficient
cy, with the value of the latter being negative at positive angles of attack. This is explained by the fact that
for bodies of small length the coefficient of tangential force considerably exceeds the coefficient of normal
force, as a consequence of which negative values of cy are obtained when calculating the forces in the flow co-
ordinate system.

For segments the quantity cg increases with the transition to larger Mach numbers. For pointed cones
the absolute value of cf,‘ increases with an increase in the angle 8 [6].

For blunted cones with bases cut off at an angle the largest absolute value of ¢, occurs at a zero angle
of attack (the value of ¢, is negative and ¢, decreases with an increase in@). An increase in the bevel angle
leads to an increase in | ¢, ] ; e.g., a change from 5 to 10° increases | cy| by 40-50%. A shift in the balancing
angle toward larger values of @ with an increase in the bevel angle is characteristic for the tested cones. A
concept of the influence of the bevel angle of the rear section on the variation in the lifting force can be ob-
tained on the basis of the data for a blunted cone with 6 =60° (Fig. 4, M=3, @ =0; curve 1 is cy).

For models with rims cut off parallel one observes a decrease in the coefficient of normal force with an
increase in the bank angle (at a zero bank angle the cutoff planes are parallel to the plane of the angle of attack).
For these models the value of ¢, has a local maximum at near-sonic velocities and increases for supersonic
flow.

For segmental bodies (see Fig. 2b) in the entire range of Mach numbers one observes longitudinal static
stability, with the stability being higher for a segment with a smaller relative radius, With an increase in the
Mach number the reserve of longitudinal static stability decreases. In the region of angles of attack v =3-13°
the curve cp =f(a) for a model of a segmental body with R/D=1.5 passes through zero at subsonic and near-
sonic velocities. If the normal force is equal to zero then the resultant of the aerodynamic forces acting on
the body is equal in magnitude to the tangential force and acts parallel to the axis of the body. In the general
case, being displaced from the axis of symmetry of the craft, it can create a longitudinal moment, which has
been observed in experiments. At any positive angles of attack the tangential moment for segments was nega~
tive and its absolute value increased monotonically with an increase in the angle of attack «. In the entire
investigated range of angles of attack cones with a large aperture half-angle have a negative derivative moz‘ (see
Fig. 2b) and hence are stable relative to some position determined from the condition m, =0. A decrease in
stability with a decrease in the degree of blunting is characteristic for cones. The restoring moment grows as
M increases and the balancing angle shifts toward larger values of &

The qualitative character of the variation in the stability of blunted cones having a beveled rear section
is presented in Fig. 4 (M=3,a =0, curve 2 is 6 =60°, 3 is 8 =70°). As the bevel angle increases the tangential
moment of the models first grows rapidly, reaches a maximum in the region of y =2-5°, and then starts to
decline. The stability of models of blunted cones with edges cut off parallel decreases with an increase in the
banking angle as the edge cutoffs approach each other.



Let us consider the influence of the Mach number and the angle of attack on the location of the center of
pressure of models of blunted bodies of small length, In subsonic flow over a model of a segmental body with
R/D =1.46 the center of pressure Cp moves from 2-5 calibers ahead of the model at o =5° to 2.5-20 calibers
behind the model at @ =10° as a result of a change in the sign of the normal force. In supersonic flow over
segments both the angle of attack and the Mach number have a weak effect on the location of the center of pres-
sure, which is located behind the model (by 3-5 calibers for a model with R/D =1.46, for example). For
blunted cones the location of the center of pressure is at a distance of 0.3-1.5 calibers behind the model and
depends little on the blunting radius. With an increase in the Mach number the center of pressure approaches
the model (see Fig. 2c).

In the case of flow over cones having a beveled base the value of ¢p grows as the angle of attack in-
creases. Edges cut off parallel have little effect on the location of the center of pressure of a blunted cone in
the investigated range of Mach numbers and angles of attack.
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DIFFUSION SLIP AND BARODIFFUSION OF A GASEOUS
MIXTURE IN PLANE AND CYLINDRICAL CHANNELS

V. M. Zhdanov and R. V. Smirnova UDC 532.529+532.72 +533.6.011

In the forced flow of a gaseous mixture in a capillary or a porous medium in a field of partial-
pressure gradients, a number of effects occur (the diffusion baroeffect [1, 2], the mixture-sep-
aration effect [3, 4], etc.), a rigorous analysis of which requires the inclusion of Boltzmann's
kinetic equation. The main object of the kinetic consideration in this case is to obtain expres-
sions for the flows of the mixture components, averaged over the cross section of the channel
or referred to unit surface of the porous medium. This problem has been solved in a number
of papers [5-71 for channels of correct geometry (a plane slit or a circular cylindrical capil-
lary) using the linearized kinetic equation with the model BGK integral of the collisions in the
Hamel form [8]. In [9] the flow of a mixture in a plane channel was considered using the ac-
curate linearized collison operator, but subsequent use of the moment method of solution was
confined to the solid-sphere model of the molecules. The limitation of the models used does
not enable the accuracy of the results obtained to be guaranteed, particularly with regard to
such kinetic quantities as the diffusion slip coefficient or the barodiffusion constant of the gas-
eous mixture in the channel. It is well known, in particular [8], that no matter how the param-
eters of the slip in the BGK model for the mixture are chosen, it is not possible to ensure an
adequate description of the diffusion and the viscosity of the mixture simultaneously even for
normal hydrodynamic flow. Below we solve the problem of theflow of a mixture in a channel
using the linearized kinetic equation with the collision operator in the model form proposed by
‘McCormack [10]. The advantage of this model, based on the equivalence of the N-order mo-
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